An Implicit Numerical Method for the Riemann–Liouville Distributed-Order Space Fractional Diffusion Equation
نویسندگان
چکیده
This paper investigates a two-dimensional Riemann–Liouville distributed-order space fractional diffusion equation (RLDO-SFDE). However, many challenges exist in deriving analytical solutions for dynamic systems. Efficient and reliable methods need to be explored solving the RLDO-SFDE numerically. We develop an alternating direction implicit scheme prove that numerical method is unconditionally stable convergent with accuracy of O(σ2+ρ2+τ+hx+hy). After employing extrapolated technique, convergence order improved second time space. Furthermore, fast algorithm constructed reduce computational costs. Two examples are presented verify effectiveness methods. study may provide more possibilities simulating complexities by calculus.
منابع مشابه
An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملNumerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملImplicit RBF Meshless Method for the Solution of Two-dimensional Variable Order Fractional Cable Equation
In the present work, the numerical solution of two-dimensional variable-order fractional cable (VOFC) equation using meshless collocation methods with thin plate spline radial basis functions is considered. In the proposed methods, we first use two schemes of order O(τ2) for the time derivatives and then meshless approach is applied to the space component. Numerical results obtained ...
متن کاملA New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation
In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in...
متن کاملNumerical techniques for the variable order time fractional diffusion equation
(2012) Numerical techniques for the variable order time fractional diffusion equation. NOTICE: this is the author's version of a work that was accepted for publication in Applied Mathematics and Computation. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractal and fractional
سال: 2023
ISSN: ['2504-3110']
DOI: https://doi.org/10.3390/fractalfract7050382